Noticias de openai

ChatGPT y el contexto

En 1973, Arthur C. Clarke escribió Perfiles del Futuro: Una Investigación sobre los Límites de lo Posible", donde formuló sus famosas “Tres Leyes”, siendo la tercera la más citada: “Cualquier tecnología suficientemente avanzada es indistinguible de la magia.” Esta frase hoy me persigue, especialmente con el auge de los Modelos de Lenguaje Grande (LLMs) o el uso de ChatGPT. Estos modelos pueden generar resultados que se sienten mágicos, pero no entender el papel que juega el contexto es no entender su esencia misma.

El contexto no es solo una característica; es la base que permite a estos modelos realizar su “magia”.

El contexto en los LLMs se refiere a los diversos tipos de información que el modelo procesa para generar una respuesta relevante y eso incluye al menos 3 divisiones:

  • La consulta: esto es el texto o consulta que el usuario quiere entender y sirve como el prompt principal para la respuesta del modelo.
  • Instrucciones del usuario: cualquier directiva específica o guía dada por el usuario, como pedir un resumen, una explicación detallada o un cambio en el tono. Esto incluye que le digas cual es el perfil al que debe apuntar (eg: "soy un arquitecto de 35 años, con 8 de experiencia en diseño de aeropuertos") y que puedes incluir siempre en la consulta.
  • Conocimiento amplio: la información con la que el modelo ha sido entrenado, incluidos libros, artículos y otras fuentes de datos, que le permite entender el lenguaje, los conceptos y los contextos más allá de la entrada inmediata.

Cuando el LLM genera respuestas, está sintetizando estos elementos, por eso las respuestas generadas suenan coherentes y, sobre todo, relevantes para las expectativas del usuario. Sin aprovechar este contexto, el modelo perdería su capacidad de proporcionar respuestas significativas para tus expectativas o, luego de refinar el "context window", que sean realmente precisas.

“Now you’re looking for the secret, but you won’t find it, because of course you’re not really looking. You don’t really want to know. You want to be fooled.”
― Christopher Priest, The Prestige (citado antes)

Personalizar los LLMs para aprovechar al máximo la entrada inmediata y las instrucciones del usuario es clave para garantizar respuestas relevantes y efectivas. (Nota: obviamente no hablo de personalizar el modelo porque no está a tu alcance). Por ejemplo:

  • Optimizar la entrada inmediata: puedes ser preciso en la forma en que formulas tus consultas para obtener las respuestas más precisas y enfocadas. En lugar de hacer preguntas vagas, como “¿Qué es la IA?”, intenta algo más específico para que la respuesta salga adaptada a un perfil como el tuyo:
    • “Explica los beneficios clave de la IA en la salud en términos simples, soy un paciente de 53 años que conoce poco de tecnología.
  • Personalizar las instrucciones del usuario: puedes guiar al modelo para que produzca contenido que se ajuste a tus preferencias y las opciones son ilimitadas. Por ejemplo, podrías pedir que se adapte a un formato: “Resume este artículo en 3 puntos”. O a tu conocimiento: “Dame una explicación detallada con términos técnicos”. O a tu necesidad de mimos al ego:
    • "De todas nuestras interacciones, ¿cuál es una cosa que puedes decirme sobre mí que tal vez no sepa sobre mí?"

Cuanto más refines y personalices tus entradas, mejor podrá el modelo responder a tus necesidades específicas.

Además de mejorar las interacciones con preguntas más precisas, podés personalizar ChatGPT/Claude o MetaAI para que se adapte aún más a tus necesidades.

Por ejemplo, ChatGPT puede recordar detalles de tus conversaciones previas, lo que le permite ofrecer respuestas más relevantes y personalizadas a largo plazo. Podés preguntarle directamente qué recuerda de ti para que borres lo que no te interese o agregues datos o pedirle que te ayude a ajustar la forma en que responde a tus solicitudes.

Por ejemplo, una simple pregunta como “¿Qué sabes sobre mí?” te mostrará la información que ChatGPT ha guardado de tus interacciones previas, brindándote una mayor comprensión de cómo utiliza el contexto para personalizar su asistencia y quizás tengo la ventaja de haber heche una carrera humanistica donde se entiende que:

La importancia del contexto en comunicación es que organiza y da sentido al mensaje. El significado de un mensaje no depende solo de su estructura gramatical, sintáctica o léxica sino también del contexto que acompaña a un enunciado y afecta a su interpretación.

Que lindo futuro nos espera con prompt engineering.

| Inteligencia Artifical
Tags:
AI chatgpt innovación llm openai

Elon Musk vs OpenAI

Hace unos días Elon Musk demandó a OpenAI para que rompan sus alianzas comerciales. Hoy OpenAI respondió con datos mostrando que Elon Musk los demanda porque "logramos avanzar en la misión de OpenAI sin su ayuda". Honestamente no iba a hablar de la demanda de Musk porque es la continuación de su lobby personal por destruirla.

No sólo la "demanda" no tiene sentido porque no había un contrato sino que es un diatriba sobre cómo se aprovecharon de él, pero esto es simplemente una pelea de egos porque Musk no acepta que no se la regalaron.

Leer completa
| Inteligencia Artifical
Tags:
AI elon musk emprendedores inteligencia artificial openai sam altman

Open AI Sora crear videos con Inteligencia Artificial y prompts

Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.

Este video fue creado por Open AI usando Sora, su último modelo, que puede crear videos usando prompts de texto pero, también, crear videos usando videos como base para crear variaciones en estilo, cinematografía y cualquier otra variable que puedas elegir o crear simplemente describiendo el cambio que querés.

We explore large-scale training of generative models on video data. Specifically, we train text-conditional diffusion models jointly on videos and images of variable durations, resolutions and aspect ratios. We leverage a transformer architecture that operates on spacetime patches of video and image latent codes. Our largest model, Sora, is capable of generating a minute of high fidelity video. Our results suggest that scaling video generation models is a promising path towards building general purpose simulators of the physical world.

Research: Video generation models as world simulators
Leer completa
| Inteligencia Artifical
Tags:
AI openai SORA Superinteligencias video

OpenAI y las oportunidades inevitables

Esta semana el uso de inteligencia artificial en el cine es parte del reclamo en la huelga de los escritores, también el uso de inteligencia artificial en la creación de las animaciones en Secret Invasion desató quejas y amenazas de más huelgas…

Esta misma semana Carlos Banon, un arquitecto multi-premiado, decidió crear un curso para “expandir conceptos arquitectónicos con comandos de Midjourney y desarrollar skills de control de geometría, materiales y creación de atmósferas usando stable Difussion y ControlNet

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of light, it was the season of darkness, it was the spring of hope, it was the winter of despair.

Charles Dickens, A Tale of Two Cities

Esta misma semana salió un estudio donde se muestra que el 92% de los developers de software usan Copilot y “Over 80% of developers believe that AI-powered coding tools can enhance team collaboration, improve code quality, speed project completion and improve incident resolution

Mientras una industria abraza una tecnología como un copiloto que la ayuda a mejorar sus capacidades creativas (evitando lo repetitivo) y otra industria trata de buscar el espacio donde se puede mejorar (la idea de crear atmósferas en arquitectura usando motores OSS!) hay otras que tratan de frenar el uso de la tecnología y frenar a los que la están usando.

El cambio es inevitable… pero estas herramientas son un copiloto y amplían tu capacidad creativa y de protototipadp liberando espacio repetitivo y solitario.

| Inteligencia Artifical Rants
Tags:
Estrategias IA openai

La carta abierta con la inteligencia artificial

Ayer se conoció una carta abierta con mas de mil firmas pidiendo que se abra un período de "freno" al desarrollo y entrenamiento de modelos de inteligencia artificial (LLM) superiores a GPT-4 por seis meses porque "no se entienden los alcances de esta tecnología". Los medios corrieron a publicarlo en medio de advertencias sobre el poder de la Inteligencia Artificial General; en Linkedin varios gurús hablaron de un apocalipsis mientras otros pedimos calma.

Hoy se descubrió que la carta estaba financiada por Elon Musk, que en las "mil firmas de científicos e investigadores" había muchas falsificadas y que otros tampoco estaban de acuerdo con el texto final.

Primero lo importante: ¿tiene sentido pedir que se frene el avance de los LLM?

Realmente no tiene sentido, arrancando por el hecho de que un modelo de linguistico grande (LLM) está muy lejos de ser una inteligencia artificial general capaz de sustituir y dominar a los humanos; de hecho incluso los firmantes de esa carta lo reconocen con lo que de movida no tiene sentido el pedido.

Segundo, ¿están pidiendo que "el Estado establezca una moratoria de seis meses"? ¿Qué aplicabilidad real tiene el pedido de algo a escala mundial cuando ni siquiera se pueden regular conceptos básicos como la exportación de tecnología a "estados rebeldes"?

Pero más allá de eso los "threat actors" que descubrieron en esto una nueva herramienta para sus intereses ¿van a frenar porque lo piden académicos? Si era así de simple, deberían pedir que se dejen de cometer crímenes :)

¿Porque Elon financió esta carta?

En 2016 cuando se funda Open AI, Elon Musk estaba en el grupo fundador y se comprometió a poner 1.000 millones, pero en 2018 se imaginó que el podía hacer mejor trabajo que el equipo liderado por Sam Altam entonces quiso tomar control de la iniciativa.

Le dijeron que no (porque no podia manejar Tesla, Space X y encima OpenAI) y se enojó y retiró la plata que se había comprometido a poner en el proyecto. Hoy, casi 5 años después, se arrepiente y decide crear un nuevo startup que compita con OpenAI pero necesita tiempo para alcanzarlos. [Link a Semafor]

Y esta usando Twitter para avanzar su agenda; ahí reside el valor de la apuesta que hizo por la red social.

Pero mas allá de todo, este incidente es clave para entender que estamos en un momento de cambio y que hay muchos intereses tratando de frenar el avance de una herramienta que ya está activa y evolucionando.

| Inteligencia Artifical
Tags:
IA openai

El incentivo de innovar y el costo de no hacerlo

Fue Steve Jobs el que dijo "If you don't cannibalize yourself, someone else will." y creo que por eso la acción de Google cayó un 9% en un solo dia cuando apuró un evento de AI y no porque "hubo un error en una demo".

Lo que el análisis de 280 caracteres resume en "Google perdió un 9% porque una demo salió mal" es no entender el porque Google no habia presentado hasta ahora una interfaz conversacional como ChatGPT para aumentar los resultados: esto cambia la dinamica de negocio y no hay incentivos para innovar si canibalizas tus ingresos mientras cambia tu estructura de costos

  • La estructura de costos de una interfaz conversacional sobre inteligencia artificial es diferente a la del modelo actual de los buscadores (aka: 10 blue links).
  • El modelo de ingresos cambia radicalmente versus la actual integracion de links de anuncios arriba y abajo de los resultados en varios sentidos:
    • La interfaz es diferente entonces el espacio "above the fold" cambia; la integracion/mezcla de SERP/SEO cambia
    • pero mas estratégico es que el usuario ahora espera algo mas que "un link con la informacion" y nadie hizo pruebas a escala de esos nuevos modelos.

Pero entonces ¿con tantas preguntas porque el mercado le pego a Google este golpe que borró $100b en una hora? porque esperaban que se presente algo parecido al nuevo Bing que presentó Microsoft y Google no lo hizo... repito: no lo hizo porque pese a tener talento y tecnologia no tenia incentivos para probar algo que pudiera canibalizar su modelo de negocios por eso hay otro jugador, Microsoft, probando cosas nuevas.

¿Porque hablo de Microsoft si empece hablando de la caida de 9% en un dia de $GOOG o citando a Steve Jobs? porque la realidad es que en algun momento todos los negocios necesitan cambiar... y los mejores ejemplos son los dos "abuelos" del mercado de las Big Tech: Apple y Microsoft tienen 47 años y ya sufrieron reinvenciones.

Apple presento el iPhone en 2007 sabiendo que iban a volver obsoleto al iPod aun cuando era el motor de su crecimiento; Microsoft se enfoco en la nube aun cuando era su core eran los servers... "If you don't cannibalize yourself, someone else will."

Enter Satya y su experiencia en canibalizarse antes que lo canibalice otro, que explica MUY bien en su entrevista con The Verge sobre "The New Bing":

Like all things, one of the things that I think about is, in platform shifts, two things have to happen. You have to retool pretty much every product of yours, so you’ve got to rethink it, whether that’s the way you build it or what its core features are. It’s like how Microsoft had to pivot for the cloud to rethink exchange. It was not an exchange server. It was exchange as a service or what we had to do with our server infrastructure. We had to rebuild, essentially, a new core stack in Azure. So every time, with transitions, you have to essentially rewrite it. That’s how I think about it. The second thing is you also have to think about the business model. Sometimes these transitions are pretty harsh. I’ll tell you, the last transition from having the high share server business with great gross margins to saying, “Hey, the new business is called cloud, and it’s going to have one-fourth the margins” as the new news was pretty harsh, but we made it.

Satya Nadella explicando las dos caras de un cambio de paradigma.

Pero ¿hace bien el mercado en apostar contra Google? honestamente no lo creo... Google tiene el talento, tiene el market share y sobre todo tiene a Chrome y Android para apalancar todo; ojala hoy tengan algo de miedo y dejen de alocar experimentos interesantes como Google Duplex a una parte de Assistant.

| Estrategias Inteligencia Artifical
Tags:
Bard chatgpt Google innovación inversiones Microsoft openai

OpenAI, ChatGPT y la era hibrida de copilotos.

El experimento del Juez Juan Manuel Padilla Garcia, de Colombia, es de los mas interesantes que he visto con OpenAI en el mundo real, cuando el Juzgado 1º Laboral del Circuito de Cartagena, usó ChatGPT para dictar sentencia y lo fundamentó en el documento... usandolo como copiloto.

"...extender los argumentos de la decisión adoptada, conforme al uso de inteligencia artificial (IA). Por consiguiente, se procedió a incluir apartes del problema jurídico planteado en la presente sentencia y se ingresó en el aplicativo https://chat.openai.com/chat" ... "El propósito de incluir estos textos producto de la IA no es en manera alguna reemplazar la decisión del Juez. Lo que realmente buscamos es optimizar los tiempos empleados en redacción de sentencias, previa corroboración de la información suministrada por IA"

Fundamentos: Juez Juan Manuel Padilla Garcia, P5 y 7

En el link está el documento completo del juez pero la base es simple de entender; estos modelos (LLM y Transformers) son herramientas que necesitan corroboración de un humano para darle sentido a su respuesta.

inteligencia artificial Maschinenmensch

La base de todo es simple: la respuesta que uno ve en ChatGPT o cualquier otro modelo, se genera por un modelo estadístico que decide que palabra (o símbolo) va luego de otra, sin entrar en valoración del sentido de lo que esta entregando.

Eso es lo que genera mucha confusión alrededor de estos transformers: Sus respuestas hacen sentido, son rápidas y son asertivas pero no están orientadas a certeza sino a modelos estadísticos.

Por eso me gusta el concepto de "copilotos" como una herramienta que ayudan al piloto con datos y background que uno puede tomar para mejorar el producto final... el segundo punto que hay que entender que pocas veces esto es un one-off; hay valor en refinar prompts, en follow ups, en buscar hacks y así dandole verdadero valor al concepto conversacional.

Por eso Stack Overflow se prohibe copiar respuestas de ChatGPT sin verificacion y errores en sus respuestas matemáticas y por eso hay gente horrorizada de verlos sin entender las limitaciones que estos modelos tienen y no terminan de entender que estamos en una era hibrida de IA

Explainability and comprehensibility of AI are important requirements for intelligent systems deployed in real-world domains. Users want and frequently need to understand how decisions impacting them are made. Similarly it is important to understand how an intelligent system functions for safety and security reasons. In this paper, we describe two complementary impossibility results (Unexplainability and Incomprehensibility), essentially showing that advanced AIs would not be able to accurately explain some of their decisions and for the decisions they could explain people would not understand some of those explanations.

Roman V. Yampolskiy - Unexplainability and Incomprehensibility of AI
| Rants
Tags:
chatgpt innovación llm openai